Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength.
نویسندگان
چکیده
BACKGROUND Several strategies to reduce construct stiffness have been proposed to promote secondary bone healing following fracture fixation with locked bridge plating constructs. However, stiffness reduction is typically gained at the cost of construct strength. In the present study, we tested whether a novel strategy for stiffness reduction, termed far cortical locking, can significantly reduce the stiffness of a locked plating construct while retaining its strength. METHODS Locked plating constructs and far cortical locking constructs were tested in a diaphyseal bridge plating model of the non-osteoporotic femoral diaphysis to determine construct stiffness in axial compression, torsion, and bending. Subsequently, constructs were dynamically loaded until failure in each loading mode to determine construct strength and failure modes. Finally, failure tests were repeated in a validated model of the osteoporotic femoral diaphysis to determine construct strength and failure modes in a worst-case scenario of bridge plating in osteoporotic bone. RESULTS Compared with the locked plating constructs, the initial stiffness of far cortical locking constructs was 88% lower in axial compression (p < 0.001), 58% lower in torsion (p < 0.001), and 29% lower in bending (p < 0.001). Compared with the locked plating constructs, the strength of far cortical locking constructs was 7% lower (p = 0.005) and 16% lower (p < 0.001) under axial compression in the non-osteoporotic and osteoporotic diaphysis, respectively. However, far cortical locking constructs were 54% stronger (p < 0.001) and 9% stronger (p = 0.04) under torsion and 21% stronger (p < 0.001) and 20% stronger (p = 0.02) under bending than locked plating constructs in the non-osteoporotic and osteoporotic diaphysis, respectively. Within the initial stiffness range, far cortical locking constructs generated nearly parallel interfragmentary motion. Locked plating constructs generated significantly less motion at the near cortex adjacent to the plate than at the far cortex (p < 0.01). CONCLUSIONS Far cortical locking significantly reduces the axial stiffness of a locked plating construct. This gain in flexibility causes only a modest reduction in axial strength and increased torsional and bending strength.
منابع مشابه
Far Cortical Locking Enables Flexible Fixation While Maintaining Construct Strength
INTRODUCTION: The stiffness of a fixation construct affects the mechanism and progression by which a fracture heals. Locked plating constructs have improved fixation strength in weak bone, but their relatively high stiffness may suppress interfragmentary motion (IFM) to a level insufficient for optimal promotion of secondary bone healing.[1] This is especially of concern when locked plates are ...
متن کاملComparison of 4 Methods for Dynamization of Locking Plates: Differences in the Amount and Type of Fracture Motion
BACKGROUND Decreasing the stiffness of locked plating constructs can promote natural fracture healing by controlled dynamization of the fracture. This biomechanical study compared the effect of 4 different stiffness reduction methods on interfragmentary motion by measuring axial motion and shear motion at the fracture site. METHODS Distal femur locking plates were applied to bridge a metadiap...
متن کاملA nonlocking end screw can decrease fracture risk caused by locked plating in the osteoporotic diaphysis.
BACKGROUND Locking plates transmit load through fixed-angle locking screws instead of relying on plate-to-bone compression. Therefore, locking screws may induce higher stress at the screw-bone interface than that seen with conventional nonlocked plating. This study investigated whether locked plating in osteoporotic diaphyseal bone causes a greater periprosthetic fracture risk than conventional...
متن کاملApplication of Far Cortical Locking Technology in Periprosthetic Femoral Fracture Fixation: A Biomechanical Study.
BACKGROUND Lack of fracture movement could be a potential cause of periprosthetic femoral fracture (PFF) fixation failures. This study aimed to test whether the use of distal far cortical locking screws reduces the overall stiffness of PFF fixations and allows an increase in fracture movement compared to standard locking screws while retaining the overall strength of the PFF fixations. METHOD...
متن کاملBiomechanical effects of calcar screws and bone block augmentation on medial support in locked plating of proximal humeral fractures.
BACKGROUND The objective of this study was to investigate the biomechanical effects of medial fracture gap augmentation in locked plating of an unstable 2-part proximal humeral fracture with calcar screws and insertion of a corticocancellous bone block. Furthermore the mechanical behavior of dynamic locking screws in the non-parallel arrangement of a proximal humeral plate was of interest. ME...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of bone and joint surgery. American volume
دوره 91 8 شماره
صفحات -
تاریخ انتشار 2009